NOTE ON MATH 2060: MATHEMATICAL ANALYSIS II: 2016-17

CHI-WAI LEUNG

1. RIEMANN INTEGRABLE FUNCTIONS

We will use the following notation throughout this chapter.

(i): All functions f, g, h... are bounded real valued functions defined on [a,b] and m < f < M on
a, bl .
(ii): [Let ]P ca=1x9 < x1 < ... <z =>bdenote a partition on [a,b]; Put Az; = z; — x;—1 and
|IP|| = max Az;.
(iii): M;(f, P) :=sup{f(x):x € [xi—1,zi}; mi(f, P) == inf{f(x) : x € [x;_1,2;}.
Set wl(f, P) = Mz(f, P) - mz(f, P)
(iv): (the upper sum of f): U(f, P) =Y M;(f, P)Ax;
(the lower sum of f). L(f,P):=>_ m;(f, P)Ax;.
Remark 1.1. It is clear that for any partition on [a,b], we always have
(i) m(b—a) < L(f,P) <U(f,P) < M(b—a).
(“) L(_f’P) = _U(faP) and U(_f’P) = _L(faP)

The following lemma is the critical step in this section.

Lemma 1.2. Let P and Q be the partitions on [a,b]. We have the following assertions.

(i) If P C Q, then L(f,P) < L(f,Q) < U(f,Q) < U(f, P).
(i) We always have L(f, P) < U(f,Q).

Proof. For Part (i), we first claim that L(f,P) < L(f,Q) if P C Q. By using the induction on
[ := #Q — #P, it suffices to show that L(f,P) < L(f,Q)asl=1. Let P:ra=xzo<x1 < --- <xp=0>
and @ = P U {c}. Then ¢ € (zs_1,x5) for some s. Notice that we have

ms(fa P) < min{ms(f7 Q)7 m8+1(f7 Q)}
So, we have

ms(fa P)(xs - xs—l) < ms(fv Q)(C - xs—l) + ms—l—l(fv Q)(xs - C)-

This gives the following inequality as desired.
(11) L(fa Q) - L(f’ P) = ms(fa Q)(C - ‘Tsfl) + merl(fa Q)(:CS - C) - ms(f’ P)(IES - ':68*1) = 0.

Now by considering — f in the Inequality 1.1 above, we see that U(f,Q) < U(f, P).
For Part (i7), let P and @ be any pair of partitions on [a,b]. Notice that P U @ is also a partition on
[a,b] with PC PUQ and Q C PUQ. So, Part (i) implies that

L(f,P)<L(f,PUQ)<U(f,PUQ) <U([,Q).
The proof is complete. O
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The following plays an important role in this chapter.

Definition 1.3. Let f be a bounded function on [a,b]. The upper integral (resp. lower integral) of f
over [a, b], write f;f (resp. f;f), 1s defined by

" b
/ f=mf{U(f, P): P is a partation on [a,b]}.
(resp.
b
/ f=sup{L(f,P): P is a partation on [a,b]}.)

Notice that the upper integral and lower integral of f must exist by Remark 1.1.

Proposition 1.4. Let f and g both are bounded functions on [a,b]. With the notation as above, we

always have
b T b
YN

LU+AZs[ﬂf+mslﬁﬁﬂﬂsZZ+Z?.

Proof. Part (i) follows from Lemma 1.2 at once.
Part (ii) is clearly obtained by L(—f, P) = —=U(f, P).
For proving the inequality fabf + fabg < f;(f + g) < first. It is clear that we have L(f, P)+ L(g, P) <

L(f+g, P) for all partitions P on [a,b]. Now let P, and P, be any partition on [a,b]. Then by Lemma
1.2, we have

L(f.P1) + L(g, Ps) < L(f, P/ U P) + L(g, P, UPy) < L(f + 9. P, U Py) < / (f +9).

So, we have

(1.2) i i Lfﬂ}

As before, we consider — f and —g in the Inequality 1.2, we get f;(f +9) < f;f + f;g as desired. [

The following example shows the strict inequality in Proposition 1.4 (iii) may hold in general.

Example 1.5. Define a function f,g:[0,1] — R by
1 if ©€|[0,1]NQ;
ﬂm:{ o

-1 otherwise.



and

1 otherwise.

{—1 if ©€10,1]NQ;

Then it is easy to see that f + g =0 and

ffzfgzl and /Llf
AS

I
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2
Q
I
|
—_

So, we have

e

We can now reaching the main definition in this chapter.

Definition 1.6. Let f be a bounded function on [a,b]. We say that f is Riemann integrable over [a, b]
if f_baf = f;f In this case, we write f;f for this common value and it is called the Riemann integral
of f over [a,b].

Also, write R[a,b] for the class of Riemann integrable functions on |[a,b).

Proposition 1.7. With the notation as above, R[a,b] is a vector space over R and the integral

/ feRabH/feR

defines a linear functional, that is, af + Bg € Rla,b] and fa (af + Bg) = Oéfabf i ﬁfabg for all
f,9 € Rla,b] and o, B € R.

Proof. Let f,g € Rla,b] and «, 5 € R. Notice that if a > 0, it is clear that f_;af = af_;f = af;f -
af’f = [Paf. Also, if a < 0, we have [af = af’f=a [’ f=af’f = [Paf. Therefore, we have

f;af = af;f for all « € R. For showing f + g € Ra,b] and fab(f—i-g) = f(ff—l—f;g, these will
follows from Proposition 1.4 (iii) at once. The proof is finished. O

The following result is the important characterization of a Riemann integrable function. Before
showing this, we will use the following notation in the rest of this chapter.
For a partition P:a=2¢p <21 <--- <z, =band 1 <i<n, put

wi(f, P) = sup{|f(z) — f(a')| s 2,2 € [wi1, 2]}
It is easy to see that U(f,P) — L(f, P) = >, wi(f, P)Ax;.

Theorem 1.8. Let f be a bounded function on [a,b]. Then f € Rla,b] if and only if for all € > 0,
there is a partition P:a =1x9 < --- <z, =0b on [a,b] such that

(1.3) 0<U(f,P) = L(f,P) = > wi(f,P)Az; <.
=1
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Proof. Suppose that f € R[a,b]. Let € > 0. Then by the definition of the upper integral and lower

integral of f, we can find the partitions P and @ such that U(f, P) < f;f + ¢ and fabf —e < L(f,Q).
By considering the partition P U (), we see that o

/f—e<L(f,Q><L<f,PuQ><U(f,PuQ><Uf, /f+s

Since f;f = faf = faf, we have 0 < U(f,PUQ) — L(f,PUQ) < 2¢. So, the partition PUQ is as
desired. o

Conversely, let € > 0, assume that the Inequality 1.3 above holds for some partition P. Notice that
we have

L(f.P) < Z fsffszf(f,m.

So, we have 0 < f_;f - f;f < ¢ for all € > 0. The proof is finished. O

Remark 1.9. Theorem 1.8 tells us that a bounded function f is Riemann integrable over |a,b] if and
only if the “size” of the discontinuous set of f is arbitrary small.

Example 1.10. Let f : [0,1] — R be the function defined by

if x = —, where p, q are relatively prime positive integers;

f) = {O otherwise.

Then f € R[0,1].

(Notice that the set of all discontinuous points of f, say D, is just the set of all (0,1] N Q. Since the
set (0,1] N Q is countable, we can write (0,1] NQ = {21, 22, ....}. So, if we let m(D) be the “size” of
the set D, then m(D) = m(U;2{zi}) = Yooy m({zi}) = 0, in here, you may think that the size of
each set {z;} is 0. )

Proof. Let € > 0. By Theorem 1.8, it aims to find a partition P on [0, 1] such that

U(f,P)—L(f,P)<e
Notice that for x € [0, 1] such that f(z) > ¢ if and only if x = ¢/p for a pair of relatively prime positive
integers p, ¢ with % > e. Since 1 < g < p, there are only finitely many pairs of relatively prime positive
integers p and ¢ such that f(%) >e. So, if welet S :={x €]0,1]: f(x) > ¢}, then S is a finite subset
of [0,1]. Let L be the number of the elements in S. Then, for any partition P:a=1x¢ < -+ < x,, = 1,

we have .
Yowilf,P) A= Y.+ > ) wlf,P)Ax;
=1 Z':[{L‘ifl,z‘i]ﬂSZQ i:[:l?i,l,z‘i]ﬂs;ﬁ@

Notice that if [x;—1,z;] NS = 0, then we have w;(f, P) < e and thus,

> wi(f,P)Az;<e > Ar; <e(1-0).

i:[:l?i_l,mi]ﬁS:@ i:[zi_l,mi}ﬂS:(Z)

D=

On the other hand, since there are at most 2L sub-intervals [z;_1, x;] such that [z;_1,2;] NS # () and
wi(f,P) <1 foralli=1,...,n, so, we have

S wilf,P) Az <1 Y Ax<2L|P|.

Z‘Z[:I?i_l,xi]ﬁS#@ i:[mi_hxi}ﬂS#@



We can now conclude that for any partition P, we have
n
> wilf, P)Az; <e+2L||P|.
i=1

So, if we take a partition P with ||P|| < e/(2L), then we have > ", w;(f, P)Az; < 2e.
The proof is finished. O]

Proposition 1.11. Let f be a function defined on |a,b]. If f is either monotone or continuous on
[a,b], then f € R[a,b].

Proof. We first show the case of f being monotone. We may assume that f is monotone increasing.
Notice that for any partition P : a = zy < -+ < x,, = b, we have w;(f, P) = f(z;) — f(x;—1). So, if
| P|| < e, we have

n n n

D wilf, P)YAz =Y (f@)—f(xio)Azi < |PI| D (f(x)—f(zi1) = [PI(f(b)—f(a) < e(f(b)—F(a)).
i=1 i=1 i=1

Therefore, f € Rla,b] if f is monotone.

Suppose that f is continuous on [a,b]. Then f is uniform continuous on [a,b]. Then for any ¢ > 0,
there is § > 0 such that |f(z) — f(2')| < € as z,2’ € [a,b] with |z —2'| < 4. So, if we choose a partition
P with ||P|| <6, then w;(f, P) < ¢ for all i. This implies that

n n
S wilf, P)Az; < ey Az =e(b— a).
i=1 i=1
The proof is complete. 0

Proposition 1.12. We have the following assertions.

(i) If f.g € Rla,b] with f < g, then [\ f < [ g.
(ii) If f € Rla,b], then the absolute valued function |f| € Rla,b]. In this case, we have |f;f| <

b
Ja 11
Proof. For Part (i), it is clear that we have the inequality U(f, P) < U(g, P) for any partition P. So,

we have [ f = [1f < [lg = [}g.

For Part (i7), the integrability of |f| follows immediately from Theorem 1.8 and the simple inequality
1£1(&") = [f[(«")] < [f(z') = f(@")| for all 2’,2" € [a,b]. Thus, we have U(|f|,P) — L(|f],P) <
U(f,P)— L(f,P) for any partition P on [a,b|.

Finally, since we have —f < |f| < f, by Part (i), we have ]fabf\ < f; |f| at once. O

Proposition 1.13. Let a < ¢ < b. We have f € R[a,b] if and only if the restrictions flj, € R|a,c]
and flicp € Rlc,b]. In this case we have

(1.4) A@=é%+l%.

Proof. Let f1 := f|[a,c] and fy := f|[c,b}-
It is clear that we always have
U(f1, 1) = L(f1, P1) + U(f2, P2) — L(f2, 2) = U(P, f) = L(f, P)

for any partition P; on [a,c] and P; on [c, b] with P = P; U Ps.
From this, we can show the sufficient condition at once.
For showing the necessary condition, since f € Rla,b], for any ¢ > 0, there is a partition @ on [a, b]
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such that U(f,Q) — L(f,Q) < & by Theorem 1.8. Notice that there are partitions P, and P, on [a, ]
and [c, b] respectively such that P := Q U {c} = P U P,. Thus, we have

U(f1,P1) — L(f1, P1) + U(f2, o) — L(f2, P2) = U(f,P) — L(f,P) < U(f,Q) — L(f,Q) <.

So, we have f; € R[a,c| and f2 € R]c, b].
It remains to show the Equation 1.4 above. Notice that for any partition P, on [a,c] and P, on [c,b],
we have

b b
L(fl,P1)+L(f2,P2):L(f,Plng)g/f:/ I

So, we have fac f+ fcb f< f; f. Then the inverse inequality can be obtained at once by considering
the function —f. Then the resulted is obtained by using Theorem 1.8. g

2. FUNDAMENTAL THEOREM OF CALCULUS

Now if f € R]a,b|, then by Proposition 1.13, we can define a function F : [a,b] — R by

0 ifc=a
1) Flo) = {f;f ifa<c<b.

Theorem 2.1. Fundamental Theorem of Calculus: With the notation as above, assume that
f € Rla,b], we have the following assertion.
(i) If there is a continuous function H on [a,b] which is differentiable on (a,b) with H = f,
then f;f = H(b) — H(a). In this case, H is called an indefinite integral of f. (note: if
Hy and Hy both are the indefinite integrals of f, then by the Mean Value Theorem, we have
Hy = Hy + constant).
(ii) The function F defined as in Eq. 2.1 above is continuous on [a,b|. Furthermore, if f is
continuous on [a,b], then F' exists on (a,b) and F' = f on (a,b).

Proof. For Part (i), notice that for any partition P :a = xg < --- < x, = b, then by the Mean Value
Theorem, for each [z;_1, 2], there is £ € (x;_1,x;) such that F(x;) — F(z;—1) = F'(§)Ax; = f(§)Awx;.
So, we have

L(f,P) <Y f(O)Az; =) F(wi) = F(wio1) = F(b) - F(a) <U(f, P)
for all partitions P on [a,b]. This gives

Lff:A%SF@_F@“{Z}:AZ
as desired. -

For showing the continuity of F' in Part (ii), let a < ¢ < x < b. If |f| < M on [a,b], then we have
|F(z)—F(c)| = | [ f] < M(z—c). So, limy_,q F(z) = F(c). Similarly, we also have lim,_,._ F(z) =
F(c). Thus F is continuous on [a, b].

Now assume that f is continuous on [a, b]. Notice that for any ¢ > 0 with a < ¢ < ¢+t < b, we have

1 1 c+t
in ﬂms—@w+n—F@»=—/ F< sup flx).
z€[e,c+1] t tJe z€[c,c+t]

1 1
Since f is continuous at ¢, we see that tliro]rhr ;(F(c—i—t) —F(c)) = f(c). Similarly, we have tlim —(F(c+
—

—0— ¢

t) — F(c)) = f(c). So, we have F'(c) = f(c) as desired. The proof is finished. O



3. RIEMANN SUMS

Definition 3.1. For each bounded function f on [a,b]. Call R(f,P,{&}) = > f(&)Ax;, where
& € [zi—1,xi], the Riemann sum of f over [a,b].
We say that the Riemann sum R(f,P,{&}) converges to a number A as ||P| — 0, write A =

||113i|fnoR(f’ P, {&}), if for any € > 0, there is § > 0 such that
%

‘A - R(f7 P7 {5’6})‘ <e
whenever |P|| < § and for any & € [xi—1, z;].

Proposition 3.2. Let f be a function defined on [a,b]. If the limit lim R(f,P,{&}) = A ewists,

li
[l P|—0
then f is automatically bounded.

Proof. Suppose that f is unbounded. Then by the assumption, there exists a partition P : a = zg <
or < @y = bsuch that | Yy f(&)Axy| < 1+ |A| for any & € [z_1,2]. Since f is unbounded, we
may assume that f is unbounded on [a,z1]. In particular, we choose & = xy, for k = 2,...,n. Also, we
can choose ¢; € [a, z1] such that

[F(EDIAZL > 1+ [A] + ) flar) Ayl
k=2

It leads to a contradiction because we have 1+ |A| > |f(&)|Az1 — | > p_s f(zx)Azg|. The proof is
finished. O

Lemma 3.3. f € Rla,b] if and only if for any € > 0, there is § > 0 such that U(f,P) — L(f,P) < ¢
whenever || P|| < §.

Proof. The converse follows from Theorem 1.8.

Assume that f is integrable over [a,b]. Let & > 0. Then there is a partition Q : a = yg < ... < y; = bon
[a,b] such that U(f,Q) — L(f,Q) < e. Now take 0 < é < &/l. Suppose that P:a =29 < ... <z, =0
with ||P|| < d. Then we have

U(f,P)—L(f,P)=1+1I
where
I= > wilf,P)Ax;
QN[ 1,x;]=0
and
IT = > wilf, P)Ag
1:QN[wi—1,7;]#0
Notice that we have
I'<U(f,Q)—L(f,Q) <e
and
m<M-m) Y Anc< (M—m).2z§:2(M—m)s.
1:QN[wi—1,7;]#£0
The proof is finished. O

Theorem 3.4. f € Rla,b] if and only if the Riemann sum R(f, P,{&}) is convergent. In this case,
b
R(f,P,{&}) converges to/ f(z)dz as ||P|| — 0.
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Proof. For the proof (=) : we first note that we always have
and

b
uﬁMS/fmmsvmm

for any partition P and &; € [x;_1, 4]
Now let e > 0. Lemma 3.3 gives d > 0 such that U(f, P) — L(f, P) < € as ||P|| < d. Then we have

b
\/fmm—MﬂR%m<€

b
as ||P|| < 6 and & € [x;—1,z;]. The necessary part is proved and R(f, P,{&;}) converges to / f(z)dz.
For (<) : assume that there is a number A such that for any € > 0, there is § > 0, we havea
A—e<R(f,P{&}) <A+e

for any partition P with | P|| < ¢ and &; € [zi—1, %]

Notice that f is automatically bounded in this case by Proposition 3.2.

Now fix a partition P with ||P|| < 0. Then for each [z;_1,z;], choose & € [zi_1,x;] such that
M;(f,P) —e < f(&;). This implies that we have

U(f,P)—e(b—a)SR(f,P,{gi})<A+€.

So we have shown that for any € > 0, there is a partition P such that

(3.1) /bf(a:)dx <U(f,P)<A+e(l+b—a).

By considering — f, note that the Riemann sum of —f will converge to —A. The inequality 3.1 will
imply that for any € > 0, there is a partition P such that

b b
A—€(1+b—a)§/f(x)dx§/f(x)dx§A+€(1+b—a).
The proof is finished. O]

Theorem 3.5. Let f € R[c,d] and let ¢ : [a,b] — [c,d] be a strictly increasing C* function with
fla) =c and f(b) =d.

Then f o ¢ € Rla,b], moreover, we have

d b
/fwm:/fwmwwt

Proof. Let A = fcdf(x)dx. By Theorem 3.4, we need to show that for all € > 0, there is § > 0 such
that

A= F(O(&))d (&) Ati| < &

for all & € [tx—1,tx] whenever Q :a =ty < ... < t,, = b with ||Q|| < J.
Now let € > 0. Then by Lemma 3.3 and Theorem 3.4, there is §; > 0 such that

(3.2) A=) flm)Aayl < e

and

(3.3) > w(f, P)Aay < e



for all ny € [rg_1,zx] whenever P:c=x¢ < ... < x,, = d with [|P]| < 0.

Now put z = ¢(t) for t € [a, b].

Now since ¢ and ¢’ are continuous on [a,b], there is 6 > 0 such that |¢(t) — ¢(¢')| < 01 and |¢'(t) —
¢ ()| < e for all t,t" infa,b] with [t —t'| < 4.

Now let Q :a =ty < ... <ty =bwith ||Q| < 6. If we put x = ¢(t;), then P:c=2p < .... <z, =d
is a partition on [c, d] with || P|| < é; because ¢ is strictly increasing.

Note that the Mean Value Theorem implies that for each [t;_1,1;], there is { € (tx—1,t;) such that

Az = d(tr) — ¢(tp—1) = ¢' (&) Aty
This yields that
(3.4) | Az — ¢ (&) Aty| < eAty,

for any & € [ty—1,tx] for all k = 1,...,m because of the choice of ¢.
Now for any & € [tx—1, x|, we have

[A= " F(@(&))S (&) Dte] < [A =" F((£1))0 () At
(3.5) + D FBENS (€A = > F(S(E)) (€6) Dt
F Y FOEN ()AL — > F(D(6r)D (&) At
Notice that inequality 3.2 implies that
[A=>" F(@ENS (€0 Dt = [A = F($(&h) D] < .
Also, since we have |¢'(§) — qb’(fk)| < e for all k=1,..,m, we have
1D FOENG () A — Y F(SED)S () Aty < M(b—a)e

where |f(x)| < M for all z € [¢,d].
On the other hand, by using inequality 3.4 we have

¢ (k) Dtr| < Ay + ety

for all k. This, together with inequality 3.3 imply that

1> FSENS (&) At — > F(6(&r)) (&) Aty

<Y wn(f, P (&) Atk| (o $(E8), $(E) € [, 1))

< Zwk fy P)(Axy 4+ eAty)

<e+2M(b—a)e.
Finally by inequality 3.5, we have

A=) F(0(R) (&) At| < e+ M(b—a)e + e+ 2M(b— a)e.

The proof is finished. O

4. IMPROPER RIEMANN INTEGRALS

Definition 4.1. Let —co < a < b < 00.

(i) Let f be a function defined on [a,00). Assume that the restriction fli, 1) is integrable over
00 T
[a,T] for all T > a. Put / f= Tlim / [ if this limit exists.
a —X Jq
Similarly, we can define ffoof if f is defined on (—o0,b).
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b b
(i) If f is defined on (a,b] and fli.y € R[c,b] for all a < ¢ <b. Put / f = lim foif it

c—a+
exists.

Similarly, we can define f(ff if f is defined on [a,b).
(iii) As f is defined on R, if [;* f and fi]oo f both exist, then we put [*_f = fi)oo f+
In the cases above, we call the resulting limits the improper Riemann integrals of f and say that the
integrals are convergent.

Example 4.2. Define (formally) an improper integral T'(s) ( called the T'-function) as follows:

oo
I'(s) := / 25 e dx
0
for s € R. Then I'(s) is convergent if and only if s > 0.

Proof. Put I(s) := fol 2*te dx and I1(s) := [ a* te "dx. We first claim that the integral I1(s)
is convergent for all s € R.

In fact, if we fix s € R, then we have
xs—l
= 0.

T—00 em/Q

<1 for all x > M. Thus we have

xs—l
ex/2

[oe) o0
0< / 2 e % dx < / e 24y < 0.
M M

Therefore we need to show that the integral I(s) is convergent if and only if s > 0.
Note that for 0 < n < 1, we have

! ! 11— if s —1# —1;
OS/ x31exdx§/ .’L'Sild.%': {5( 77) 1 s ?é )
n n

So there is M > 1 such that

—Inn otherwise .

1
Thus the integral I(s) = lim / % le%dx is convergent if s > 0.
n—0+ n

Conversely, we also have

—1 .
/1xslezdx>el/lxsldx: {67(1_778) lfs_l#_l;
n n

—ellnn otherwise .

So if s <0, then fnl x°~te~*dx is divergent as n — 04. The result follows. O

5. UNIFORM CONVERGENCE OF A SEQUENCE OF DIFFERENTIABLE FUNCTIONS
Proposition 5.1. Let f, : (a,b) — R be a sequence of functions. Assume that it satisfies the
following conditions:

(i) : fn(z) point-wise converges to a function f(z) on (a,b);
(ii) : each f, is a C' function on (a,b);
(i1i) : fl, — g uniformly on (a,b).
Then f is a C'-function on (a,b) with f' = g.
Proof. Fix ¢ € (a,b). Then for each x with ¢ < z < b (similarly, we can prove it in the same way as
a < z < ¢), the Fundamental Theorem of Calculus implies that

fn(z) = /m F(t)dt + fn(c).
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Since f] — ¢ uniformly on (a,b), we see that

/j f(t)dt — /j g(t)dt.

This gives
(5.1) f(z) = / " a0yt + 1)

for all © € (¢, b). Similarly, we have f(z) = [ g(t)dt + f(c) for all z € (a,b).
On the other hand, g is continuous on (a,b) since each f] is continuous and f; — ¢ uniformly on
(a,b). Equation 5.1 will tell us that f’ exists and f' = g on (a,b). The proof is finished. O

Proposition 5.2. Let (f,) be a sequence of differentiable functions defined on (a,b). Assume that
(i): there is a point ¢ € (a,b) such that lim f,,(c) exists;
(ii): fI converges uniformly to a function g on (a,b).
Then
(a): fn converges uniformly to a function f on (a,b);
(b): f is differentiable on (a,b) and f' = g.

Proof. For Part (a), we will make use the Cauchy theorem.
Let € > 0. Then by the assumptions (¢) and (i7), there is a positive integer N such that

[fm(c) = fu(e)l <e and |fy,(z) — fo(z)| <e
for all m,n > N and for all x € (a,b). Now fix ¢ < x < b and m,n > N. To apply the Mean Value
Theorem for f,,, — f, on (¢, x), then there is a point £ between ¢ and x such that
(5'2) fm(x) - fn(x) = fm(c) - fn(c) + (fr,n(f) - fé(&))(x - C)'
This implies that

(@) = fu(@)] < [fim(c) = fulo)l + £, (&) = fa(llz — o] <e+ (b—a)e

for all m,n > N and for all x € (¢,b). Similarly, when x € (a,c), we also have
[fm(x) = fa(2)] <+ (b—a)e.

So Part (a) follows.
Let f be the uniform limit of (f,) on (a,b)
For Part (b), we fix u € (a,b). We are going to show

t B =

Let € > 0. Since (f}) is uniformly convergent on (a,b), there is N € N such that
(5-3) (@) = fr(z)] <e

for all m,n > N and for all z € (a,b)
Note that for all m > N and = € (a,b) \ {u}, applying the Mean value Theorem for f,, — fx as before,

we have
fm(@) = I (@) _ fm(w) = In(w)

T —u T —u
for some & between u and =x.
So Eq.5.3 implies that

(fm (&) = fn (&)

fm (@) = fm(u)  fn(x) = fn(w)

r—u r—1U

(5.4) |

| <e
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for all m > N and for all z € (a,b) with x # u.
Taking m — oo in Eq.5.4, we have

f(@) = flu)  fn(@) — fn(w)

| | <e.
r—u T —u

Hence we have

|f($x):£(u) ()] < |f($i:£(u) B fN($x):£N(U)|+ |fN(5'2:2]:N(u) — ()
<o YOIy

So if we can take 0 < d such that |W — fy(w)| < efor 0 < |z —u| <9, then we have

fx) = f(u)

LI ) < e

for 0 < |z —u| < 6. On the other hand, by the choice of N, we have |f} (v) — fy(y)| < € for all
y € (a,b) and m > N. So we have |g(u) — fj(u)| < e. This together with Eq.5.5 give

(5.5) |

f(x)— flu
,M — g(u)| < 3¢
T —u
as 0 < |z —u| <, that is we have
T—u T —Uu
The proof is finished. O

Remark 5.3. The uniform convergence assumption of (f},) in Propositions 5.1 and 5.2 is essential.

Example 5.4. Let f,(x) := ﬁ for x € (=1,1). Then we have
1 —n?a? 0 if x #0;
= lim f/ =lim ———— = ’
g(x) = lim f(z) = lim TESIEE {1 if o= 0.
On the other hand, f, — 0 uniformly on (—=1,1). In fact, if f}(1/n) =0 for all n = 1,2, .., then f,
attains the mazximal value f,(1/n) = % at x = 1/n for each n = 1,... and hence, f, — 0 uniformly
on (—1,1).

So Propositions 5.1 and 5.2 does not hold. Note that (f],) does not converge uniformly to g on (—1,1).

6. DINI’'S THEOREM

Recall that a subset A of R is said to be compact if for any family open intervals cover {J;};cs of
A, that is, each J; is and open interval and A C J,.; J;, we can find finitely many .J;,, ..., J;,, such
thatAthU---UJz‘N.

el

The following is a very important result.

Theorem 6.1. A subset A of R is compact if and only if any sequence (x,) in A has a convergent
subsequence (zp, ) such that limyg x,, € A. In particular, every closed and bounded interval is compact
by using the Bolzano-Weierstrass Theorem.
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Proposition 6.2. (Dini’s Theorem): Let A be a compact subset of R and f, : A — R be a sequence
of continuous functions defined on A. Suppose that
(i) for each x € A, we have fp(x) < fp41(x) for alln =1,2...;
(ii) the pointwise limit f(x) := lim,, f,(z) exists for all x € A;
(iii) f is continuous on A.
Then f, converges to f uniformly on A.
Proof. Let g, :== f — f,, defined on A. Then each g, is continuous and g¢,(z) | 0 pointwise on A. It

suffices to show that g, converges to 0 uniformly on A.
Method I: Suppose not. Then there is € > 0 such that for all positive integer N, we have

(6'1) gn(xn) > €.
for some n > N and some x, € A. From this, by passing to a subsequence we may assume that
gn(xy) > e for all n = 1,2,.... Then by using the compactness of A, Theorem 6.1 gives a convergent

subsequence (z,,) of (z,) in A. Let z := liinxnk € A. Since gp,(2) L 0 as k — oo. So, there is a
positive integer K such that 0 < g,, (2) < £/2. Since gy, is continuous at z and lim z,,, = 2z, we have
(2

lim g (Tn;) = gng (2). So, we can choose i large enough such that i > K
1

Ini(Tn;) < Gny (¥n,) < €/2

because g (zn,) |+ 0 as m — oco. This contradicts to the Inequality 6.1.

Method II: Let ¢ > 0. Fix € A. Since g,(x) | 0, there is N(z) € N such that 0 < g, (z) < ¢ for
all n > N(x). Since gy(,) is continuous, there is d(x) > 0 such that gy(,)(y) < ¢ for all y € A with
|z —y| < d(x). If we put J, := (x—d(x),z+6(x)), then A C |J,c4 Jo. Then by the compactness of A,
there are finitely many z1, ..., Z, in A such that A C J,, U---UJ,, . Put N := max(N(x1),..., N(zm)).
Now if y € A, then y € J(x;) for some 1 < ¢ < m. This implies that

In(¥) < IN@)(Y) <€
for allm > N > N(x;). O

REFERENCES
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7. ABSOLUTELY CONVERGENT SERIES

Throughout this section, let (a,) be a sequence of complex numbers.

oo o0
Definition 7.1. We say that a series Zan 1s absolutely convergent zfz lay| < 0.

n=1 n=1
o
Also a convergent series Z an 18 said to be conditionally convergent if it is not absolute convergent.
n=1
0 (_1)n+1
Example 7.2. Important Example : The series ZT 1s conditionally convergent when
n
n=1

O0<a<l.

This example shows us that a convergent improper integral may fail to the absolute convergence or
square integrable property.

For instance, if we consider the function f : [1,00) — R given by

(-1

fla) =%

if n<zr<n+l.

oo
If a =1/2, then / f(x)dx is convergent but it is neither absolutely convergent nor square integrable.
1

o0
Notation 7.3. Let o : {1,2...} — {1,2....} be a bijection. A formal series Zaa(n) is called an

n=1

oo
rearrangement of E Q-

n=1

Example 7.4. In this example, we are going to show that there is an rearrangement of the series

o .
1 i+1

Z i 1s divergent although the original series is convergent. In fact, it is conditionally conver-

i

i=1

gent.

We first notice that the series ), ﬁ diverges to infinity. Thus for each M > 0, there is a positive

integer N such that

=1
for all n > N. Then there is N1 € N such that
(= 2i—1 2 '
=1

By using (%) again, there is a positive integer No with N1 < Na such that

N1

1 1 1 1
— = —Z>2
Z 21—1 2 + Z 21—1 4 -
=1 N1<i<Na

To repeat the same procedure, we can find a positive integers subsequence (Ny) such that

Ny

1 1 11 1 1
22¢—1_§+ 2 51 1 T -2 51 "

i=1 N1<i<Na Nj_1<i<Nj




15

(-t

for all positive integers k. So if we let a, = , then one can find a bijection o : N — N such that

(_1)i+1

o o
the series g ag(;) 1S an rearrangement of the series E

' ' i=1 i=1
is finished.

and diverges to infinity. The proof

o o
Theorem 7.5. Let Zan be an absolutely convergent series. Then for any rearrangement Z%(n)

n=1 n=1
oo o0
s also absolutely convergent. Moreover, we have E ap = g Ag(n)-
n=1 n=1

Proof. Let o : {1,2...} — {1,2...} be a bijection as before.
We first claim that ) a,(,) is also absolutely convergent.
Let € > 0. Since ), |a,| < oo, there is a positive integer N such that

|CLN+1| LR =+ |aN+p| < E e (*)

for all p = 1,2.... Notice that since ¢ is a bijection, we can find a positive integer M such that
M > max{j:1<o0(j) < N}. Then o(i) > N if i > M. This together with () imply that if i« > M
and p € N, we have
lag(izn)] + e laiip)| < &

Thus the series ) aq(,) is absolutely convergent by the Cauchy criteria.
Finally we claim that Y- a, = >, o). Put I =3 a, and I' = 3 a,(,). Now let ¢ > 0. Then
there is V € N such that

N

u_zan,<5 and  |anpq| 4 +lansp| <€ oeee- (s5)

n=1

for all p € N. Now choose a positive integer M large enough so that {1,..., N} C {o(1),...,0(M)} and

M
| — Z%(z‘)| < e. Notice that since we have {1,..., N} C {o(1),...,0(M)}, the condition (x*) gives
i=1

N M
‘Zan - Zao‘(i)’ < Z la;| < e.
n=1 i=1

N<i<oo
We can now conclude that

N N M M
IEESIEDY - —U)<3
< an| + 1D an =D gl + 1 aon — U < 3e.
n=1 n=1 =1 i=1

The proof is complete. O

8. POWER SERIES
Throughout this section, let
f(;p) = Zale ............ (*)

i=0
denote a formal power series, where a; € R.

Lemma 8.1. Suppose that there is ¢ € R with ¢ # 0 such that f(c) is convergent. Then
(i) : f(z) is absolutely convergent for all x with |z| < |c|.
(ii) : f converges uniformly on [—n,n] for any 0 <n < |c|.
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Proof. For Part (i), note that since f(c) is convergent, then lim a,c™ = 0. So there is a positive integer
N such that |a,c"| <1 for all n > N. Now if we fix |z| < ]c[ then |z/c| < 1. Therefore, we have

0o N-1
D lanllz™ <Y Janlla® + Y lanc™(z/c* < Z Janl[a"] + Y |z /c|" < oo.
n=1 n=1 n>N n>N

So Part (i) follows.

Now for Part (i7), if we fix 0 < n < |c| ,then |a,z"| < |a,n|™ for all n and for all z € [—n,n]. On the
other hand, we have ) |a,n™| < oo by Part (i). So f converges uniformly on [—n,7n] by the M-test.
The proof is finished. O

Remark 8.2. In Lemma 8.9(ii), notice that if f(c) is convergent, it does not imply f converges
uniformly on [—c, c] in geneml

For example, f(x) :=1+ Z . Then f(—1) is convergent but f(1) is divergent.

Definition 8.3. Call the set dom f:= {x € R: f(c) is convergent } the domain of convergence of f
for convenience. Let 0 < r :=sup{|c|: c € dom f} < oco. Then r is called the radius of convergence

of f.

Remark 8.4. Notice that by Lemma 8.9, then the domain of convergence of f must be the interval
with the end points +r if 0 < r < co.

When r =0, then dom f = {0}.

Finally, if r = 0o, then dom f =R.

Example 8.5. If f(z) = >_,°  nla™, then r = (0). In fact, notice that if we fix a non-zero number
x and consider lim,, |(n + 1)!z"*|/|nlz"| = oo, then by the ratio test f(x) must be divergent for any

x#0. Sor =0 and dom f = (0).

Example 8.6. Let f(z) = 1+ 3.0 2™/n™. Notice that we have lim,, |z /n"™Y/™ = 0 for all z. So
the root test implies that f(x) is convergent for all x and then r = oo and dom f =R.

Example 8.7. Let f(z) = 1+ Y02 2"/n. Then lim, |2""/(n + 1)| - [n/a™| = |z| for all x # 0.
So by the ration test, we see that if |x| < 1, then f(z) is convergent and if |x| > 1, then f(x) is
divergent. So r = 1. Also, it is known that f(1) is divergent but f(—1) is divergent. Therefore, we
have dom f =[-1,1).

Example 8.8. Let f(z) = Y. 2"/n?. Then by using the same argument of Example 8.7, we have
r = 1. On the other hand, it is known that f(£1) both are convergent. So dom f =[—1,1].

Lemma 8.9. With the notation as above, if r > 0, then f converges uniformly on (—n,n) for any
O<n<r.

Proof. 1t follows from Lemma 8.1 at once. U

Remark 8.10. Note that the Example 8.7 shows us that f may not converge uniformly on (—r,r).
In fact let f be defined as in Example 8.7. Then f does not converges on (—1,1). In fact, if we let
sn() = Y 5o axx®, then for any positive integer n and 0 < x < 1, we have

|son(z) — sp(z)| = e + =
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sp(x)| = 1/2 as x — 1—. So for each n, we can find
Thus f does not converges uniformly on (—1,1) by

From this we see that if n is fived, then \Szn(x)

0 < <1 such that |son(z) — sp(z)] >4 — 1 =

the Cauchy Theorem.

l
4

Proposition 8.11. With the notation as above, let £ = lim |a,|"/™ or lim |CT"+|1| provided it exists.
n
Then
3 if 0< (< oo;
r=+<¢0 if £=o00
o0 if £=0.

Proposition 8.12. With the notation as above if 0 < r < oo, then f € C*°(—r,r). Moreover, the
k-derivatives f)(z) = Y sk akn(n —1)(n—2)-- - (n—k+ 12" " for all z € (—r,r).

Proof. Fix ¢ € (—r,r). By Lemma 8.9, one can choose 0 < n < r such that ¢ € (—n,n) and f converges

uniformly on (—n,7).

It needs to show that the k-derivatives f*)(c) exists for all k > 0. Consider the case k = 1 first.

If we consider the series Y o0 ((an,z™) = > °° na,z™ !, then it also has the same radius r be-

cause limy, [na,|"/" = lim, |a,|'"/". This implies that the series > .°° , na,z" ' converges uniformly
n (—n,n). Therefore, the restriction f|(—n,n) is differentiable. In particular, f’(c) exists and

7(0) = 320y nanen =,

So the result can be shown inductively on k. O

Proposition 8.13. With the notation as above, suppose that r > 0. Then we have

t)dt = St = anx”
/f Z/a n+1 v

+1

for all x € (—r,r).

Proof. Fix 0 < x < r. Then by Lemma 8.9 f converges uniformly on [0,z]|. Since each term a,t" is
continuous, the result follows. [l

Theorem 8.14. (Abel) : With the notation as above, suppose that 0 < r and f(r) (or f(—r)) exists.
Then f is continuous at x = r (resp. x = —r), that is lim f(z) = f(r).
T—r—

Proof. Note that by considering f(—x), it suffices to show that the case x = r holds.
Assume r = 1.

Notice that if f converges uniformly on [0, 1], then f is continuous at x = 1 as desired.
Let € > 0. Since f(1) is convergent, then there is a positive integer such that

for n > N and for all p =1,2.... Note that for n > N; p=1,2... and = € [0, 1], we have

Sner(x) - Sn(CU) = CLnJrl:CTH-l + an+2xn+1 + an+3xn+1 e + CLnerSCTH_l
+ CLnJrQ(IETH—Q _ ;Cn-l-l) =+ an+3(xn+2 _ ;Cn-l-l) e + aner(xTH-? o xn-{—l)
(81) + an+3(ac”+3 — {I,‘n+2) Foeeeeenn + an+p(xn+3 xn+2)

+ aner(xn-i-p o xn-i—p—l).
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Since x € [0, 1], [a"Fh+L — gntk| = prtk _ gnthtl Qo the Eq.8.1 implies that
()50 ()] < £lm 1t (a2 b () e (P DY) = (2 ) < 2

So f converges uniformly on [0, 1] as desired.
Finally for the general case, we consider g(z) := f(rz) = 3, a,r™z". Note that lim,, |a,r"|"/" = 1
and ¢g(1) = f(r). Then by the case above,, we have shown that

f(r)=9(1) = lim g(z) = lim f(z).
The proof is finished. O

Remark 8.15. In Remark 8.10, we have seen that f may not converges uniformly on (—r,r). How-
ever, in the proof of Abel’s Theorem above, we have shown that if f(£r) both exist, then f converges
uniformly on [—r,r] in this case.
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9. REAL ANALYTIC FUNCTIONS
Proposition 9.1. Let f € C*(a,b) and c € (a,b). Then for any x € (a,b) \ {c} and for any n € N,

there is & = {(x,n) between ¢ and x such that

(k) (e z pntl)
f(x):zf ()(x—c)k—i-/ fT(t)(x—t)"dt

k!
k=0

©  f(k)
Call Z / k'(c) (z — ¢)F (may not be convergent) the Taylor series of f at c.
k=0 ’

Proof. 1t is easy to prove by induction on n and the integration by part. O

Definition 9.2. A real-valued function f defined on (a,b) is said to be real analytic if for each
c € (a,b), one can find § >0 and a power series Y oo o ax(z — c)* such that

f(z) = Z ag(z—c)f (%)
k=0

for allx € (¢ —9d,c+6) C (a,b).

Remark 9.3.

(i) : Concerning about the definition of a real analytic function f, the expression (%) above is
uniquely determined by f, that is, each coefficient ay’s is uniquely determined by f. In fact,
by Proposition 8.12, we have seen that f € C*®(a,b) and

forall k=0,1,2,....

(ii) : Although every real analytic function is C*°, the following example shows that the converse
does not hold.
Define a function f: R — R by

fz) =

e~ 1/z? if x #0;
0 if ©=0.

One can directly check that f € C®(R) and f*)(0) = 0 for all k = 0,1,2.... So if f is real
analytic, then there is § > 0 such that ap = 0 for all k by the Eq.(xx) above and hence f(x) =0
for all x € (—0,9). It is absurd.

(iii) Interesting Fact : Let D be an open disc in C. A complex analytic function f on D is
similarly defined as in the real case. However, we always have: f is complex analytic if and
only if it is C'°.

Proposition 9.4. Suppose that f(z) := > 2, ap(x—c)* is convergent on some open interval I centered
at ¢, that is I = (¢ —r,c+ 1) for some r > 0. Then f is analytic on I.

Proof. We first note that f € C°°(I). By considering the translation x — ¢, we may assume that ¢ = 0.
Now fix z € I. Now choose ¢ > 0 such that (z — 4,z + ) C I. We are going to show that

o 1()(, .
=3 LB

=0 7
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for all x € (2 — 9,z + 9).
Notice that f(z) is absolutely convergent on I. This implies that

for all z € (z — 0,z 4+ ¢). The proof is finished. O

Example 9.5. Let a € R. Recall that (1 + x)* is defined by e*(+2) for x> —1.

Now for each k € N, put
<Oé> B {a(a—l)---l-ﬁ-!-(a—k—f—l) lf L 7& 0;

k 1 if ©=0.
Then
fl@)=>0+2)*= Z <Z>xk
k=0
whenever |z| < 1.
Consequently, f(x) is analytic on (—1,1).
Proof. Notice that f*)(z) = a(a —1)------ (@ —k+1)(1 +2)* for |z < 1.

Fix |z| < 1. Then by Proposition 9.1, for each positive integer n we have

=) z f)
f(x):Z—f k!<0)xk+/0 (i _(fi!(:c—t)”_ldt

k=0

So by the mean value theorem for integrals, for each positive integer n, there is &, between 0 and x

such that . .
* f " (t) n—1 _ f " (gn) n—1
/0 (n—l)!(x_t) dt = (n_l)!(x—gn) x
Now write &, = f 0 — FARIED) _ ¢ \n—1
n = Npa for some 0 < n, <1 and R,(z) := = 1) (x — &))" "x. Then
Rute) = (o) (@) @) ooy = amnsn) (| Yot )

We need to show that R,(x) — 0 as n — oo, that is the Taylor series of f centered at 0 converges to

o0
f. By the Ratio Test, it is easy to see that the series Z(a —k+1) (Z) y* is convergent as |y| < 1.
k=0

This tells us that lim [(« —n + 1) <a) 2" = 0.
n n
On the other hand, note that we always have 0 < 1—n,, < 1+n,z for all n because x > —1. Thus, we



21

can now conclude that R, (z) — 0 as |z| < 1. The proof is finished. Finally the last assertion follows
from Proposition 9.4 at once. The proof is complete. ]
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